Showing 1 - 10 of 17,701
We consider finite state space stationary hidden Markov models (HMMs) in the situation where the number of hidden states is unknown. We provide a frequentist asymptotic evaluation of Bayesian analysis methods. Our main result gives posterior concentration rates for the marginal densities, that...
Persistent link: https://www.econbiz.de/10011166349
This paper constructs individual-specific density forecasts for a panel of firms or households using a dynamic linear model with common and heterogeneous coefficients and cross-sectional heteroskedasticity. The panel considered in this paper features a large cross-sectional dimension N but short...
Persistent link: https://www.econbiz.de/10011932215
We consider Bayesian estimation of restricted conditional moment models with linear regression as a particular example. The standard practice in the Bayesian literature for semiparametric models is to use flexible families of distributions for the errors and assume that the errors are...
Persistent link: https://www.econbiz.de/10010290980
This paper considers Bayesian nonparametric estimation of conditional densities by countable mixtures of location-scale densities with covariate dependent mixing probabilities. The mixing probabilities are modeled in two ways. First, we consider finite covariate dependent mixture models, in...
Persistent link: https://www.econbiz.de/10010290994
This paper considers Bayesian nonparametric estimation of conditional densities by countable mixtures of location-scale densities with covariate dependent mixing probabilities. The mixing probabilities are modeled in two ways. First, we consider finite covariate dependent mixture models, in...
Persistent link: https://www.econbiz.de/10009401962
This paper proposes a new Bayesian approach for estimating, nonparametrically, functional parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove...
Persistent link: https://www.econbiz.de/10010699932
This paper proposes a new Bayesian approach for estimating, nonparametrically, parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove consistency,...
Persistent link: https://www.econbiz.de/10011158976
This paper proposes a new Bayesian approach for estimating, nonparametrically, parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove consistency,...
Persistent link: https://www.econbiz.de/10011160752
Bayesian partially identified models have received a growing attention in recent years in the econometric literature, due to their broad applications in empirical studies. Classical Bayesian approach in this literature has been assuming a parametric model, by specifying an ad-hoc parametric...
Persistent link: https://www.econbiz.de/10011113790
We propose a quasi-Bayesian nonparametric approach to estimating the structural relationship φ among endogenous variables when instruments are available. We show that the posterior distribution of φ is inconsistent in the frequentist sense. We interpret this fact as the ill-posedness of the...
Persistent link: https://www.econbiz.de/10011052327