Showing 721 - 730 of 902
Estimation of average treatment effects in observational, or non-experimental in pre-treatment variables. If the number of pre-treatment variables is large, and their distribution varies substantially with treatment status, standard adjustment methods such as covariance adjustment are often...
Persistent link: https://www.econbiz.de/10013245539
Knowledge of the effect of unearned income on economic behavior of individuals in general, and on labor supply in particular, is of great importance to policy makers. Estimation of income effects, however, is a difficult problem because income is not randomly assigned and exogenous changes in...
Persistent link: https://www.econbiz.de/10013246652
Matching estimators for average treatment effects are widely used in evaluation research despite the fact that their large sample properties have not been established in many cases. In this article, we develop a new framework to analyze the properties of matching estimators and establish a...
Persistent link: https://www.econbiz.de/10013324491
Many empirical questions in economics and other social sciences depend on causal effects of programs or policies. In the last two decades much research has been done on the econometric and statistical analysis of the effects of such programs or treatments. This recent theoretical literature has...
Persistent link: https://www.econbiz.de/10013325038
In evaluation research, an average causal effect is usually defined as the expected difference between the outcomes of the treated, and what these outcomes would have been in the absence of treatment. This definition of causal effects makes sense for binary treatments only. In this paper, we...
Persistent link: https://www.econbiz.de/10013229089
The average effect of social programs on outcomes such as earnings is a parameter of primary interest in econometric evaluations studies. New results on using exclusion restrictions to identify and estimate average treatment effects are presented. Identification is achieved given a minimum of...
Persistent link: https://www.econbiz.de/10013231011
This paper introduces an instrumental variables estimator for the effect of a binary treatment on the quantiles of potential outcomes. The quantile treatment effects (QTE) estimator accommodates exogenous covariates and reduces to quantile regression as a special case when treatment status is...
Persistent link: https://www.econbiz.de/10013215680
In this paper, we explore ways of combining experimental data and non-experimental methods to estimate the differential effects of components of training programs. We show how data from a multi-site experimental evaluation in which subjects are randomly assigned to any treatment versus a control...
Persistent link: https://www.econbiz.de/10013216140
In Regression Discontinuity (RD) designs for evaluating causal effects of interventions, assignment to a treatment is determined at least partly by the value of an observed covariate lying on either side of a fixed threshold. These designs were first introduced in the evaluation literature by...
Persistent link: https://www.econbiz.de/10013110538
Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described as...
Persistent link: https://www.econbiz.de/10013126219