Showing 1 - 10 of 2,278
It is a challenging task to understand the complex dependency structures in an ultra-high dimensional network, especially when one concentrates on the tail dependency. To tackle this problem, we consider a network quantile autoregres- sion model (NQAR) to characterize the dynamic quantile...
Persistent link: https://www.econbiz.de/10011572028
It is a challenging task to understand the complex dependency structures in an ultra-high dimensional network, especially when one concentrates on the tail dependency. To tackle this problem, we consider a network quantile autoregression model (NQAR) to characterize the dynamic quantile behavior...
Persistent link: https://www.econbiz.de/10012978712
The complex tail dependency structure in a dynamic network with a large number of nodes is an important object to study. Here we propose a network quantile autoregression model (NQAR), which characterizes the dynamic quantile behavior. Our NQAR model consists of a system of equations, of which...
Persistent link: https://www.econbiz.de/10012922120
Conditional quantile curves provide a comprehensive picture of a response contingent on explanatory variables. Quantile regression is a technique to estimate such curves. In a flexible modeling framework, a specific form of the quantile is not a priori fixed. Indeed, the majority of applications...
Persistent link: https://www.econbiz.de/10012966291
Pricing kernels implicit in option prices play a key role in assessing the risk aversion over equity returns. We deal with non-parametric estimation of the pricing kernel (Empirical Pricing Kernel) given by the ratio of the risk-neutral density estimator and the subjective density estimator. The...
Persistent link: https://www.econbiz.de/10012966302
On the temperature derivative market, modeling temperature volatility is an important issue for pricing and hedging. In order to apply pricing tools of financial mathematics, one needs to isolate a Gaussian risk factor. A conventional model for temperature dynamics is a stochastic model with...
Persistent link: https://www.econbiz.de/10012966308
Understanding the dynamics of high dimensional non-normal dependency structure is a challenging task. This research aims at attacking this problem by building up a hidden Markov model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a wide class of models for high...
Persistent link: https://www.econbiz.de/10012966319
Financial risk control has always been challenging and becomes now an even harder problem as joint extreme events occur more frequently. For decision makers and government regulators, it is therefore important to obtain accurate information on the interdependency of risk factors. Given a...
Persistent link: https://www.econbiz.de/10012966323
Quantile regression is in the focus of many estimation techniques and is an important tool in data analysis. When it comes to nonparametric specifications of the conditional quantile (or more generally tail) curve one faces, as in mean regression, a dimensionality problem. We propose a...
Persistent link: https://www.econbiz.de/10012966535
We consider theoretical bootstrap "coupling" techniques for nonparametric robust smoothers and quantile regression, and verify the bootstrap improvement. To cope with curse of dimensionality, a variant of "coupling" bootstrap techniques are developed for additive models with both symmetric error...
Persistent link: https://www.econbiz.de/10012966544