Showing 11 - 20 of 302
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume both the number of covariates in the model and candidate variables can increase with the number of observations and the number of candidate variables is,...
Persistent link: https://www.econbiz.de/10010851219
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse,high-dimensional, linear time-series models. We assume both the number of covariates in the model and candidate variables can increase with the number of observations and the number of candidate variables is, possibly,...
Persistent link: https://www.econbiz.de/10010568141
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume that both the number of covariates in the model and the number of candidate variables can increase with the sample size (polynomially orgeometrically). In other...
Persistent link: https://www.econbiz.de/10011252422
In this paper we show the validity of the adaptive LASSO procedure in estimating stationary ARDL(p,q) models with GARCH innovations. We show that, given a set of initial weights, the adaptive Lasso selects the relevant variables with probability converging to one. Afterwards, we show that the...
Persistent link: https://www.econbiz.de/10011252686
Persistent link: https://www.econbiz.de/10009614505
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume both the number of covariates in the model and candidate variables can increase with the number of observations and the number of candidate variables is,...
Persistent link: https://www.econbiz.de/10009656893
Persistent link: https://www.econbiz.de/10010363888
Persistent link: https://www.econbiz.de/10010385850
Persistent link: https://www.econbiz.de/10008669363
In this paper we show the validity of the adaptive LASSO procedure in estimating stationary ARDL(p,q) models with GARCH innovations. We show that, given a set of initial weights, the adaptive Lasso selects the relevant variables with probability converging to one. Afterwards, we show that the...
Persistent link: https://www.econbiz.de/10010505034