Showing 1 - 10 of 39
We develop highly-efficient parallel Partial Differential Equation (PDE) based pricing methods on Graphics Processing Units (GPUs) for multi-asset American options. Our pricing approach is built upon a combination of a discrete penalty approach for the linear complementarity problem arising due...
Persistent link: https://www.econbiz.de/10013132968
We present a Graphics Processing Unit (GPU) parallelization of the computation of the price of exotic cross-currency interest rate derivatives via a Partial Differential Equation (PDE) approach. In particular, we focus on the GPU-based parallel pricing of long-dated foreign exchange (FX)...
Persistent link: https://www.econbiz.de/10013133913
We propose a general framework for efficient pricing via a partial differential equation (PDE) approach for exotic cross-currency interest rate (IR) derivatives, with strong emphasis on long-dated foreign exchange (FX) IR hybrids, namely Power Reverse Dual Currency (PRDC) swaps with a FX Target...
Persistent link: https://www.econbiz.de/10013140111
We propose a general framework for efficient pricing via a Partial Differential Equation (PDE) approach of cross-currency interest rate derivatives under the Hull-White model. In particular, we focus on pricing long-dated foreign exchange (FX) interest rate hybrids, namely Power Reverse Dual...
Persistent link: https://www.econbiz.de/10013150362
We present a highly efficient parallelization of the computation of the price of exotic cross-currency interest rate derivatives with path-dependent features via a Partial Differential Equation (PDE) approach. In particular, we focus on the parallel pricing on Graphics Processing Unit (GPU)...
Persistent link: https://www.econbiz.de/10013084747
We discuss efficient pricing methods via a Partial Differential Equation (PDE) approach for long dated foreign exchange (FX) interest rate hybrids under a three-factor multi-currency pricing model with FX volatility skew. The emphasis of the paper is on Power-Reverse Dual-Currency (PRDC) swaps...
Persistent link: https://www.econbiz.de/10013091292
New methods for solving general linear parabolic partial differential equations (PDEs) in one space dimension are developed. The methods combine quadratic-spline collocation for the space discretization and classical finite differences, such as Crank-Nicolson, for the time discretization. The...
Persistent link: https://www.econbiz.de/10014203451
In this paper, we study a partial differential equation (PDE) framework for option pricing where the underlying factors exhibit stochastic correlation, with an emphasis on computation. We derive a multi-dimensional time-dependent PDE for the corresponding pricing problem, and present a numerical...
Persistent link: https://www.econbiz.de/10012942983
We develop a highly efficient MC method for computing plain vanilla European option prices and hedging parameters under a very general jump-diffusion option pricing model which includes stochastic variance and multi-factor Gaussian interest short rate(s). The focus of our MC approach is variance...
Persistent link: https://www.econbiz.de/10012948316
One-way coupling often occurs in multi-dimensional models in finance. In this paper, we present a dimension reduction technique for Monte Carlo (MC) methods, referred to as drMC, that exploits this structure for pricing plain-vanilla European options under a N-dimensional one-way coupled model,...
Persistent link: https://www.econbiz.de/10013029895