Showing 1 - 10 of 1,251
We consider an observation-driven location model where the unobserved location variable is modeled as a random walk process and where the error variable is from a mixture of normal distributions. The mixed normal distribution can approximate many continuous error distributions accurately. We...
Persistent link: https://www.econbiz.de/10012795401
We introduce a nonlinear semi-parametric model that allows for the robust filtering of a common stochastic trend in a multivariate system of cointegrated time series. The observation-driven stochastic trend can be specified using flexible updating mechanisms. The model provides a general...
Persistent link: https://www.econbiz.de/10015073352
Persistent link: https://www.econbiz.de/10015073825
The equivalence of the Beveridge-Nelson decomposition and the trend-cycle decomposition is well established. In this paper we argue that this equivalence is almost immediate when a Gaussian score-driven location model is considered. We also provide a natural extension towards heavy-tailed...
Persistent link: https://www.econbiz.de/10014450610
We develop a score-driven time-varying parameter model where no particular parametric error distribution needs to be specified. The proposed method relies on a versatile spline-based density, which produces a score function that follows a natural cubic spline. This flexible approach nests the...
Persistent link: https://www.econbiz.de/10015198647
Persistent link: https://www.econbiz.de/10015071895
We characterize the dynamic properties of Generalized Autoregressive Score (GAS) processes by identifying regions of the parameter space that imply stationarity and ergodicity. We show how these regions are affected by the choice of parameterization and scaling, which are key features of GAS...
Persistent link: https://www.econbiz.de/10013065930
We introduce a new model for time-varying spatial dependence. The model extends the well-known static spatial lag model. All parameters can be estimated conveniently by maximum likelihood. We establish the theoretical properties of the model and show that the maximum likelihood estimator for the...
Persistent link: https://www.econbiz.de/10013049149
We develop optimal formulations for nonlinear autoregressive models by representing them as linear autoregressive models with time-varying temporal dependence coefficients. We propose a parameter updating scheme based on the score of the predictive likelihood function at each time point. The...
Persistent link: https://www.econbiz.de/10013049359
We propose a new Markov switching model with time varying probabilities for the transitions. The novelty of our model is that the transition probabilities evolve over time by means of an observation driven model. The innovation of the time varying probability is generated by the score of the...
Persistent link: https://www.econbiz.de/10013052225