Showing 1 - 10 of 93
We propose how deep neural networks can be used to calibrate the parameters of Stochastic-Volatility Jump-Diffusion (SVJD) models to historical asset return time series. 1-Dimensional Convolutional Neural Networks (1D-CNN) are used for that purpose. The accuracy of the deep learning approach is...
Persistent link: https://www.econbiz.de/10014494935
Particle Filter algorithms for filtering latent states (volatility and jumps) of Stochastic-Volatility Jump-Diffusion (SVJD) models are being explained. Three versions of the SIR particle filter with adapted proposal distributions to the jump occurrences, jump sizes, and both are derived and...
Persistent link: https://www.econbiz.de/10012623003
Persistent link: https://www.econbiz.de/10014338462
Persistent link: https://www.econbiz.de/10015195617
Persistent link: https://www.econbiz.de/10011532802
Persistent link: https://www.econbiz.de/10012170648
Particle Filter algorithms for filtering latent states (volatility and jumps) of Stochastic-Volatility Jump-Diffusion (SVJD) models are being explained. Three versions of the SIR particle filter with adapted proposal distributions to the jump occurrences, jump sizes, and both are derived and...
Persistent link: https://www.econbiz.de/10012118579
Persistent link: https://www.econbiz.de/10014249520
Persistent link: https://www.econbiz.de/10013163668
Echo State Neural Networks (ESN) were applied to forecast the realized variance time series of 19 major stock market indices. Symmetric ESN and asymmetric AESN models were constructed and compared with the benchmark realized variance models HAR and AHAR that approximate the long memory of the...
Persistent link: https://www.econbiz.de/10011818288