Showing 1 - 10 of 24,932
Survival prediction from a large number of covariates is a current focus of statistical and medical research. In this paper, we study a methodology known as the compound covariate prediction performed under univariate Cox proportional hazard models. We demonstrate via simulations and real data...
Persistent link: https://www.econbiz.de/10015233629
We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum...
Persistent link: https://www.econbiz.de/10010310396
In this paper we show that the exchange rates of some commodity exporter countries have the ability to predict the price of spot and future contracts of aluminum. This is shown with both in-sample and out-of-sample analyses. The theoretical underpinning of these results relies on the...
Persistent link: https://www.econbiz.de/10015265738
We study nonparametric estimation of density functions for undirected dyadic random variables (i.e., random variables de?ned for all unordered pairs of agents/nodes in a weighted network of order N). These random variables satisfy a local dependence property: any random variables in the network...
Persistent link: https://www.econbiz.de/10012146391
Survival prediction from a large number of covariates is a current focus of statistical and medical research. In this paper, we study a methodology known as the compound covariate prediction performed under univariate Cox proportional hazard models. We demonstrate via simulations and real data...
Persistent link: https://www.econbiz.de/10011258504
Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semipara- metric general trimmed estimator (GTE) of...
Persistent link: https://www.econbiz.de/10011091424
In this paper estimators for distribution free heteroskedastic binary response models are proposed. The estimation procedures are based on relationships between distribution free models with a conditional median restriction and parametric models (such as Probit/Logit) exhibiting (multiplicative)...
Persistent link: https://www.econbiz.de/10011052316
Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semiparametric general trimmed estimator (GTE) of truncated...
Persistent link: https://www.econbiz.de/10011052333
We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum...
Persistent link: https://www.econbiz.de/10010956400
We introduce a kernel-based estimator of the density function and regression function for data that have been grouped into family totals. We allow for a common intra-family component but require that observations from different families be in dependent. We establish consistency and asymptotic...
Persistent link: https://www.econbiz.de/10010928627