Showing 1 - 10 of 441
We analyze a simple sequential algorithm (SA) for allocating indivisible items that are strictly ranked by n ≥ 2 players. It yields at least one Pareto-optimal allocation which, when n = 2, is envy-free unless no envy-free allocation exists. However, an SA allocation may not be maximin or...
Persistent link: https://www.econbiz.de/10011111579
Persistent link: https://www.econbiz.de/10009625221
Persistent link: https://www.econbiz.de/10011646571
Persistent link: https://www.econbiz.de/10013173208
We propose a procedure for dividing indivisible items between two players in which each player ranks the items from best to worst. It ensures that each player receives a subset of items that it values more than the other player's complementary subset, given that such an envy-free division is...
Persistent link: https://www.econbiz.de/10014046962
Assume that two players have strict rankings over an even number of indivisible items. We propose algorithms to find allocations of these items that are maximin—maximize the minimum rank of the items that the players receive—and are envy-free and Pareto-optimal if such allocations exist. We...
Persistent link: https://www.econbiz.de/10015246851
Persistent link: https://www.econbiz.de/10005375688
Assume that two players have strict rankings over an even number of indivisible items. We propose algorithms to find allocations of these items that are maximin—maximize the minimum rank of the items that the players receive—and are envy-free and Pareto-optimal if such allocations exist. We...
Persistent link: https://www.econbiz.de/10011210469
Persistent link: https://www.econbiz.de/10010558330
Assume two players, A and B, must divide a set of indivisible items that each strictly ranks from best to worst. If the number of items is even, assume that the players desire that the allocations be balanced (each player gets half the items), item-wise envy-free (EF), and Pareto-optimal (PO)....
Persistent link: https://www.econbiz.de/10013237412