Showing 21 - 30 of 218
The Basel Committee regulations require the estimation of Value-at-Risk at 99% confidence level for a 10-trading-day-ahead forecasting horizon. The paper provides a multivariate modelling framework for multi-period VaR estimates for leptokurtic and asymmetrically distributed real-estate...
Persistent link: https://www.econbiz.de/10015256949
Fractionally integrated autoregressive moving average (ARFIMA) and Heterogeneou Autoregressive (HAR) models are estimated and their ability to predict the one-trading-day-ahead CAC40 realized volatility is investigated. In particular, this paper follows three steps: (i) The optimal sampling...
Persistent link: https://www.econbiz.de/10015256954
The study provides evidence in favour of the price range as a proxy estimator of volatility in financial time series, in the cases that either intra-day datasets are unavailable or they are available at a low sampling frequency. A stochastic differential equation with time varying volatility of...
Persistent link: https://www.econbiz.de/10015256956
Τhis paper focuses on the performance of three alternative Value-at-Risk (VaR) models to provide suitable estimates for measuring and forecasting market risk. The data sample consists of five international developed and emerging stock market indices over the time period from 2004 to 2008. The...
Persistent link: https://www.econbiz.de/10015256960
In this paper an asymmetric autoregressive conditional heteroskedasticity (ARCH) model and a Levy-stable distribution are applied to some well-known financial indices (DAX30, FTSE20, FTSE100 and SP500), using a rolling sample of constant size, in order to investigate whether the values of the...
Persistent link: https://www.econbiz.de/10015256961
ARFIMAX models are applied in estimating the intra-day realized volatility of the CAC40 and DAX30 indices. Volatility clustering and asymmetry characterize the logarithmic realized volatility of both indices. ARFIMAX model with time-varying conditional heteroscedasticity is the best performing...
Persistent link: https://www.econbiz.de/10015256962
This paper analyses several volatility models by examining their ability to forecast the Value-at-Risk (VaR) for two different time periods and two capitalization weighting schemes. Specifically, VaR is calculated for large and small capitalization stocks, based on Dow Jones (DJ) Euro Stoxx...
Persistent link: https://www.econbiz.de/10015256963
The accuracy of parametric, non-parametric and semi-parametric methods in predicting the one-day-ahead Value-at-Risk (VaR) measure in three types of markets (stock exchanges, commodities and exchange rates) is investigated, both for long and short trading positions. The risk management...
Persistent link: https://www.econbiz.de/10015256964
The performance of an ARCH model selection algorithm based on the standardized prediction error criterion (SPEC) is evaluated. The evaluation of the algorithm is performed by comparing different volatility forecasts in option pricing through the simulation of an options market. Traders employing...
Persistent link: https://www.econbiz.de/10015256965
Most of the methods used in the ARCH literature for selecting the appropriate model are based on evaluating the ability of the models to describe the data. An alternative model selection approach is examined based on the evaluation of the predictability of the models in terms of standardized...
Persistent link: https://www.econbiz.de/10015256978