A Bayesian approach to parameter estimation for kernel density estimation via transformations
Year of publication: |
2010
|
---|---|
Authors: | Liu, Qing ; Pitt, David ; Zhang, Xibin ; Wu, Xueyuan |
Institutions: | Department of Econometrics and Business Statistics, Monash Business School |
Subject: | Bandwidth parameter | kernel density estimator | Markov chain Monte Carlo | Metropolis-Hastings algorithm | power transformation | transformation parameter |
Extent: | application/pdf |
---|---|
Series: | |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Number 18/10 18 pages |
Classification: | C14 - Semiparametric and Nonparametric Methods ; C15 - Statistical Simulation Methods; Monte Carlo Methods ; C63 - Computational Techniques |
Source: |
-
Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates
Barde, Sylvain, (2022)
-
Bayes estimates of multimodal density features using DNA and Economic Data
Basturk, Nalan, (2021)
-
Cross, Jamie, (2024)
- More ...
-
A Bayesian approach to parameter estimation for kernel density estimation via transformations
Liu, Qing, (2011)
-
A Bayesian approach to parameter estimation for kernel density estimation via transformations
Liu, Qing, (2010)
-
A Bayesian approach to parameter estimation for kernel density estimation via transformations
Liu, Qing, (2011)
- More ...