A Bayesian model for longitudinal count data with non-ignorable dropout
Asthma is an important chronic disease of childhood. An intervention programme for managing asthma was designed on principles of self-regulation and was evaluated by a randomized longitudinal study. The study focused on several outcomes, and, typically, missing data remained a pervasive problem. We develop a pattern-mixture model to evaluate the outcome of intervention on the number of hospitalizations with non-ignorable dropouts. Pattern-mixture models are not generally identifiable as no data may be available to estimate a number of model parameters. Sensitivity analyses are performed by imposing structures on the unidentified parameters. We propose a parameterization which permits sensitivity analyses on clustered longitudinal count data that have missing values due to non-ignorable missing data mechanisms. This parameterization is expressed as ratios between event rates across missing data patterns and the observed data pattern and thus measures departures from an ignorable missing data mechanism. Sensitivity analyses are performed within a Bayesian framework by averaging over different prior distributions on the event ratios. This model has the advantage of providing an intuitive and flexible framework for incorporating the uncertainty of the missing data mechanism in the final analysis. Copyright (c) 2008 Royal Statistical Society.
Year of publication: |
2008
|
---|---|
Authors: | Kaciroti, Niko A. ; Raghunathan, Trivellore E. ; Schork, M. Anthony ; Clark, Noreen M. |
Published in: |
Journal of the Royal Statistical Society Series C. - Royal Statistical Society - RSS, ISSN 0035-9254. - Vol. 57.2008, 5, p. 521-534
|
Publisher: |
Royal Statistical Society - RSS |
Saved in:
freely available
Saved in favorites
Similar items by person
-
Kaciroti, Niko A., (2006)
-
Kaciroti, Niko A., (2006)
-
Kaciroti, Niko A., (2006)
- More ...