A Bayesian Multi-Factor Model of Instability in Prices and Quantities of Risk in U.S. Financial Markets
This paper analyzes the empirical performance of two alternative ways in which multi-factor models with time-varying risk exposures and premia may be estimated. The first method echoes the seminal two-pass approach advocated by Fama and MacBeth (1973). The second approach extends previous work by Ouysse and Kohn (2010) and is based on a Bayesian approach to modeling the latent process followed by risk exposures and idiosyncratic volatility. Our application to monthly, 1979-2008 U.S. data for stock, bond, and publicly traded real estate returns shows that the classical, two-stage approach that relies on a nonparametric, rolling window modeling of time-varying betas yields results that are unreasonable. There is evidence that all the portfolios of stocks, bonds, and REITs have been grossly over-priced. On the contrary, the Bayesian approach yields sensible results as most portfolios do not appear to have been misspriced and a few risk premia are precisely estimated with a plausible sign. Real consumption growth risk turns out to be the only factor that is persistently priced throughout the sample
Year of publication: |
2011
|
---|---|
Authors: | Guidolin, Massimo |
Other Persons: | Ravazzolo, Francesco (contributor) ; Tortora, Andrea Donato (contributor) |
Publisher: |
[2011]: [S.l.] : SSRN |
Subject: | USA | United States | Bayes-Statistik | Bayesian inference | Volatilität | Volatility | Börsenkurs | Share price | Risikomaß | Risk measure | Kapitalmarkttheorie | Financial economics | Finanzmarkt | Financial market |
Saved in:
freely available