A bootstrap procedure for panel data sets with many cross-sectional units
This paper considers the issue of bootstrap resampling in panel data sets. The availability of data sets with large temporal and cross-sectional dimensions suggests the possibility of new resampling schemes. We suggest one possibility which has not been widely explored in the literature. It amounts to constructing bootstrap samples by resampling whole cross-sectional units with replacement. In cases where the data do not exhibit cross-sectional dependence but exhibit temporal dependence, such a resampling scheme is of great interest as it allows the application of i.i.d. bootstrap resampling rather than block bootstrap resampling. It is well known that the former enables superior approximation to distributions of statistics compared to the latter. We prove that the bootstrap based on cross-sectional resampling provides asymptotic refinements. A Monte Carlo study illustrates the superior properties of the new resampling scheme compared to the block bootstrap. Copyright © 2008 The Author. Journal compilation © Royal Economic Society 2008
Year of publication: |
2008
|
---|---|
Authors: | Kapetanios, G. |
Published in: |
Econometrics Journal. - Royal Economic Society - RES. - Vol. 11.2008, 2, p. 377-395
|
Publisher: |
Royal Economic Society - RES |
Saved in:
Saved in favorites
Similar items by person
-
Model selection in threshold models
Kapetanios, George, (1999)
-
Threshold models for trended time series
Kapetanios, George, (1999)
-
A bootstrap procedure for panel data sets with many cross-sectional units
Kapetanios, George, (2008)
- More ...