A class of infinitely divisible multivariate negative binomial distributions
A particular class of multivariate negative binomial distributions has probability generating functions of the form I-Q[alpha]I-QS-[alpha], where [alpha]>0 and S=diag(s1, ..., sn). The main results of this paper concern characterizations of the infinitely divisible distributions of this class.
Year of publication: |
1987
|
---|---|
Authors: | Griffiths, R. C. ; Milne, R. K. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 22.1987, 1, p. 13-23
|
Publisher: |
Elsevier |
Keywords: | Infinite divisibility multivariate geometric distribution multivariate negative binomial distribution |
Saved in:
Saved in favorites
Similar items by person
-
A class of bivariate Poisson processes
Griffiths, R. C., (1978)
-
Orthogonal polynomials on the negative multinomial distribution
Griffiths, R. C., (1975)
-
Characterization of infinitely divisible multivariate gamma distributions
Griffiths, R. C., (1984)
- More ...