A comparative assessment of different fuzzy regression methods for volatility forecasting
Year of publication: |
2013
|
---|---|
Authors: | Muzzioli, Silvia ; De Beats, B. |
Published in: |
Fuzzy optimization and decision making : a journal of modeling and computation under uncertainty. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1568-4539, ZDB-ID 2167798-0. - Vol. 12.2013, 4, p. 433-450
|
Subject: | Fuzzy regression methods | Linear programming | Least squares | Volatility forecasting | Volatilität | Volatility | Regressionsanalyse | Regression analysis | Fuzzy-Set-Theorie | Fuzzy sets | Prognoseverfahren | Forecasting model | Schätztheorie | Estimation theory | Mathematische Optimierung | Mathematical programming |
-
Volatility forecasting using support vector regression and a hybrid genetic algorithm
Santamaría-Bonfil, Guillermo, (2015)
-
Predicting stock return volatility : can we benefit from regression models for return intervals?
Fischer, Henning, (2016)
-
Forecasting the Chinese stock market volatility : a regression approach with a t-distributed error
He, Mengxi, (2022)
- More ...
-
Option-based forecasts of volatility : an empirical study in the DAX-index options market
Muzzioli, Silvia, (2010)
-
Muzzioli, Silvia, (2013)
-
The forecasting performance of corridor implied volatility in the Italian market
Muzzioli, Silvia, (2013)
- More ...