A comparative evaluation of machine learning approaches for container freight rates prediction
| Year of publication: |
2025
|
|---|---|
| Authors: | Kim, Namhun ; Cha, Junhee ; Jeon, Junwoo |
| Published in: |
The Asian Journal of Shipping and Logistics. - Amsterdam [u.a.] : Elsevier, ISSN 2092-5212, ZDB-ID 2666517-7. - Vol. 41.2025, 2, p. 99-109
|
| Subject: | Container Freight Rates | Decision Tree | LSTM | Machine learning | Prophet | Random Forest | Künstliche Intelligenz | Artificial intelligence | Frachtrate | Freight rate | Prognoseverfahren | Forecasting model | Entscheidungsbaum | Decision tree | Containerverkehr | Container transport | Containerschifffahrt | Container shipping | Containerterminal | Container terminal |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
| Language: | English |
| Other identifiers: | 10.1016/j.ajsl.2025.05.001 [DOI] hdl:10419/329761 [Handle] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Container freight rate level forecasting with machine learning methods
Feng, Yaling, (2022)
-
Agrawal, Anshul, (2023)
-
Forecasting worldwide empty container availability with machine learning techniques
Martius, Christoph, (2022)
- More ...
-
A comparative evaluation of machine learning approaches for container freight rates prediction
Kim, Namhun, (2025)
-
Computational modelling of manufacturing choice complexity in a mixed-model assembly line
Busogi, Moise, (2017)
-
Spectral analysis of the dry bulk shipping market by utilizing the system dynamics approach
Jeon, Junwoo, (2023)
- More ...