A comprehensive methodology combining machine learning and unified robust stochastic programming for medical supply chain viability
Year of publication: |
2025
|
---|---|
Authors: | Yılmaz, Ömer Faruk ; Guan, Yongpei ; Yılmaz, Beren Gürsoy ; Yeni, Fatma Betul ; Özçelik, Gökhan |
Published in: |
Omega : the international journal of management science. - Oxford [u.a.] : Elsevier, ISSN 1873-5274, ZDB-ID 1491111-5. - Vol. 133.2025, Art.-No. 103264, p. 1-28
|
Subject: | Machine learning | Contagion impact of disease | Kit allocation problem | Medical supply chain | Unified robust stochastic programming | Lieferkette | Supply chain | Künstliche Intelligenz | Artificial intelligence | Stochastischer Prozess | Stochastic process | Theorie | Theory | Mathematische Optimierung | Mathematical programming |
-
Dynamic optimization with side information
Bertsimas, Dimitris, (2023)
-
Optimization of system dynamics models : a novel methodology
Angün, Mevlüde Ebru, (2023)
-
Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design
Crainic, Teodor Gabriel, (2014)
- More ...
-
Yılmaz, Ömer Faruk, (2023)
-
Robust optimisation for ripple effect on reverse supply chain : an industrial case study
Özçelik, Gökhan, (2021)
-
Disassembly line design with multi-manned workstations : a novel heuristic optimisation approach
Cevikcan, Emre, (2020)
- More ...