A Cross-Sectional Machine Learning Approach for Hedge Fund Return Prediction and Selection
Year of publication: |
2019
|
---|---|
Authors: | Wu, Wenbo |
Other Persons: | Chen, Jiaqi (contributor) ; Yang, Zhibin (Ben) (contributor) ; Tindall, Michael L. (contributor) |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Hedgefonds | Hedge fund | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Portfolio-Management | Portfolio selection | Kapitalmarktrendite | Capital market returns |
Extent: | 1 Online-Ressource (76 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments December 11, 2019 erstellt |
Other identifiers: | 10.2139/ssrn.3238466 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A cross-sectional machine learning approach for hedge fund return prediction and selection
Wu, Wenbo, (2021)
-
Systematic risk and the cross section of hedge fund returns
Bali, Turan G., (2012)
-
Machine learning in portfolio decisions
Guidolin, Massimo, (2024)
- More ...
-
A statistical learning approach for stock selection in the Chinese stock market
Wu, Wenbo, (2019)
-
Risk measurement distortion : an improved model of return smoothing
Chen, Jiaqi, (2018)
-
A cross-sectional machine learning approach for hedge fund return prediction and selection
Wu, Wenbo, (2021)
- More ...