A data-driven approach using recurrent neural networks for material demand forecasting in manufacturing
| Year of publication: |
2025
|
|---|---|
| Authors: | Orozco Torres, Jorge Antonio ; Medina Santiago, Alejandro ; García Martínez, José Ramón ; López-Zapata, Betty Yolanda ; Mijangos López, Jorge Antonio ; Rincón Zapata, Oscar Javier ; Avitia López, Jesús Alejandro |
| Published in: |
Logistics. - Basel : MDPI AG, ISSN 2305-6290, ZDB-ID 2908937-2. - Vol. 9.2025, 3, Art.-No. 130, p. 1-17
|
| Subject: | analytics | data-driven | demand | forecasting | manufacturing | neural networks | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Industrie | Manufacturing industries | Nachfrage | Demand |
-
On the empirical performance of some new neural network methods for forecasting intermittent demand
Babai, M. Zied, (2020)
-
Claveria, Oscar, (2016)
-
Forecasting US tourist arrivals using optimal singular spectrum analysis
Hassani, Hossein, (2015)
- More ...
-
Imposición y protección social : efectos sobre el nivel de empleo en la OCDE
García Martínez, José Ramón, (2009)
-
The Tax System Incidence on Unemployment : A Country-Specific Analysis for the OECD Economies
García Martínez, José Ramón, (2010)
-
Unemployment, taxation and public expenditure in OECD economies
Doménech, Rafael, (2008)
- More ...