A deep learning approach for the dynamic dispatching of unreliable machines in re-entrant production systems
Year of publication: |
2020
|
---|---|
Authors: | Wu, Cheng-Hung ; Zhou, Fang-Yi ; Tsai, Chi-Kang ; Yu, Cheng-Juei ; Dauzère-Péres, Stéphane |
Subject: | deep learning | deep neural network | dynamic dispatching | Markov decision processes | Neuronale Netze | Neural networks | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence | Markov-Kette | Markov chain | Produktionssystem | Manufacturing system | Lernprozess | Learning process | Algorithmus | Algorithm |
-
Artificial intelligence in asset management
Bartram, Söhnke M., (2020)
-
Reservoir computing vs. neural networks in financial forecasting
Georgopoulos, Spyros P., (2023)
-
A hybrid deep learning method for optimal insurance strategies : algorithms and convergence analysis
Jin, Zhuo, (2021)
- More ...
-
Wu, Cheng-Hung, (2020)
-
Parallel machine scheduling with time constraints on machine qualifications
Nattaf, Margaux, (2019)
-
A global scheduling approach for cycle time control in complex manufacturing systems
Barhebwa-Mushamuka, Félicien, (2023)
- More ...