A deep multi-agent reinforcement learning approach to solve dynamic job shop scheduling problem
| Year of publication: |
2023
|
|---|---|
| Authors: | Liu, Renke ; Piplani, Rajesh ; Toro, Carlos |
| Published in: |
Computers & operations research : and their applications to problems of world concern ; an international journal. - Oxford [u.a.] : Elsevier, ISSN 0305-0548, ZDB-ID 194012-0. - Vol. 159.2023, p. 1-17
|
| Subject: | Deep reinforcement learning | Dynamic scheduling | Job shop scheduling | Multi-agent reinforcement learning | Scheduling-Verfahren | Scheduling problem | Agentenbasierte Modellierung | Agent-based modeling | Theorie | Theory | Lernprozess | Learning process | Lernen | Learning | Produktionssteuerung | Production control |
-
Yuan, Minghai, (2025)
-
A deep reinforcement learning based hyper-heuristic for modular production control
Panzer, Marcel, (2024)
-
Wang, Chao, (2025)
- More ...
-
Deep reinforcement learning for dynamic scheduling of a flexible job shop
Liu, Renke, (2022)
-
A two-period supply contract model for a decentralized assembly system
Zou, Xuxia, (2008)
-
Evaluation of hierarchical forecasting for substitutable products
Widiarta, Handik, (2008)
- More ...