A fast temporal decomposition procedure for long-horizon nonlinear dynamic programming
Year of publication: |
2024
|
---|---|
Authors: | Na, Sen ; Anitescu, Mihai ; Kolar, Mladen |
Published in: |
Mathematics of operations research. - Hanover, Md. : INFORMS, ISSN 1526-5471, ZDB-ID 2004273-5. - Vol. 49.2024, 2, p. 1012-1044
|
Subject: | augmented Lagrangian | nonlinear dynamic programming | sequential quadratic programming | temporal decomposition | Dynamische Optimierung | Dynamic programming | Mathematische Optimierung | Mathematical programming | Dekompositionsverfahren | Decomposition method | Chaostheorie | Chaos theory | Nichtlineare Regression | Nonlinear regression | Nichtlineare Optimierung | Nonlinear programming | Zeitreihenanalyse | Time series analysis | Nichtlineare Dynamik | Nonlinear dynamics |
-
An augmented Lagrangian filter method
Leyffer, Sven, (2020)
-
Business cycles, financial conditions and nonlinearities
Mendieta-Muñoz, Ivan, (2020)
-
Uncovering nonlinear dynamics in air transport demand
Inglada-Pérez, Lucìa, (2016)
- More ...
-
Convergence analysis of accelerated stochastic gradient descent under the growth condition
Chen, You-Lin, (2024)
-
Towards solving long-horizon nonlinear dynamic programs: scalability and robustness
Na, Sen, (2021)
-
Comments on: Algorithms for linear programming with linear complementary constraints
Anitescu, Mihai, (2012)
- More ...