A framework for eliciting, incorporating, and disciplining identification beliefs in linear models
Year of publication: |
2021
|
---|---|
Authors: | DiTraglia, Francis J. ; García Jimeno, Camilo |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 39.2021, 4, p. 1038-1053
|
Subject: | Bayesian econometrics | Beliefs | Instrumental variables | Measurement error | Partial identification | Statistischer Fehler | Statistical error | Schätztheorie | Estimation theory | Ökonometrie | Econometrics | Lineare Regression | Linear regression | Modellierung | Scientific modelling | IV-Schätzung | Wirkungsanalyse | Impact assessment | Bayes-Statistik | Bayesian inference | Validierung | Validation |
-
A framework for eliciting, incorporating, and disciplining identification beliefs in linear models
DiTraglia, Francis J., (2016)
-
A framework for eliciting, incorporating, and disciplining identification beliefs in linear models
DiTraglia, Francis J., (2015)
-
A framework for eliciting, incorporating, and disciplining identification beliefs in linear models
DiTraglia, Francis J., (2015)
- More ...
-
Mis-Classified, Binary, Endogenous Regressors : Identification and Inference
DiTraglia, Francis J., (2017)
-
A framework for eliciting, incorporating, and disciplining identification beliefs in linear models
DiTraglia, Francis J., (2016)
-
A framework for eliciting, incorporating, and disciplining identification beliefs in linear models
DiTraglia, Francis J., (2015)
- More ...