A fusion of statistical and machine learning methods : GARCH-XGBoost for improved volatility modelling of the JSE Top40 Index
| Year of publication: |
2025
|
|---|---|
| Authors: | Maingo, Israel ; Ravele, Thakhani ; Sigauke, Caston |
| Published in: |
International Journal of Financial Studies : open access journal. - Basel : MDPI, ISSN 2227-7072, ZDB-ID 2704235-2. - Vol. 13.2025, 3, Art.-No. 155, p. 1-30
|
| Subject: | ARMA(3,2) | EGARCH(1,1) | forecasting | hybrid model | JSE Top40 index | machine learning | risk management | time series | volatility modelling | XGBoost | Volatilität | Volatility | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | ARCH-Modell | ARCH model | Aktienindex | Stock index | Risikomanagement | Risk management | Theorie | Theory | Südafrika | South Africa |
-
Natural disaster shocks and commodity market volatility : a machine learning approach
Kampouris, Ilias, (2025)
-
Naimoli, Antonio, (2023)
-
The hybrid forecast of S&P 500 volatility ensembled from VIX, GARCH and LSTM models
Roszyk, Natalia, (2024)
- More ...
-
Short-term forecasting of the JSE All-Share Index using gradient boosting machines
Mukhaninga, Mueletshedzi, (2025)
-
Short-term forecasting of the JSE All-Share Index using gradient boosting machines
Mukhaninga, Mueletshedzi, (2025)
-
Asymptotic dependence modelling of the BRICS stock markets
Sigauke, Caston, (2022)
- More ...