A general inferential framework for singly-truncated bivariate normal models with applications in economics
Year of publication: |
2024
|
---|---|
Authors: | Liu, Yin ; Tian, Guo-Liang ; Zhang, Chi ; Qin, Hong |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 64.2024, 5, p. 2747-2781
|
Subject: | Economic index | EM algorithm | MM algorithm | Singly-truncated bivariate normal distribution | Stochastic representation | Truncated data | Theorie | Theory | Algorithmus | Algorithm | Statistische Verteilung | Statistical distribution | Stochastischer Prozess | Stochastic process | Mathematische Optimierung | Mathematical programming |
-
A Mixture of Gaussians Approach to Mathematical Portfolio Oversight : The EF3M Algorithm
Lopez de Prado, Marcos, (2013)
-
Distributionally robust losses for latent covariate mixtures
Duchi, John C., (2023)
-
Hidden semi-Markov models for rainfall-related insurance claims
Shi, Yue, (2023)
- More ...
-
Liu, Yin, (2018)
-
The Impact of CFO Gender on Corporate Overinvestment
Liu, Yin, (2021)
-
Liu, Yin, (2021)
- More ...