A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery
Year of publication: |
November 2020
|
---|---|
Authors: | Rolf, Esther |
Other Persons: | Proctor, Jonathan (contributor) ; Carleton, Tamma A. (contributor) ; Bolliger, Ian (contributor) ; Shankar, Vaishaal (contributor) ; Ishihara, Miyabi (contributor) ; Recht, Benjamin (contributor) ; Hsiang, Solomon (contributor) |
Institutions: | National Bureau of Economic Research (contributor) |
Publisher: |
2020: Cambridge, Mass : National Bureau of Economic Research |
Subject: | Künstliche Intelligenz | Artificial intelligence | Weltraumtechnik | Space technology | Fotografie | Photograph | Sozialökonomik | Social economics | Bildverarbeitung | Image processing |
-
A generalizable and accessible approach to machine learning with global satellite imagery
Rolf, Esther, (2020)
-
A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery
Rolf, Esther, (2022)
-
Using Satellite Imagery and Deep Learning to Evaluate the Impact of Anti-Poverty Programs
Huang, Yue, (2021)
- More ...
-
A generalizable and accessible approach to machine learning with global satellite imagery
Rolf, Esther, (2020)
-
A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery
Rolf, Esther, (2022)
-
Parameter Recovery Using Remotely Sensed Variables
Proctor, Jonathan, (2023)
- More ...