A granular machine learning framework for forecasting high-frequency financial market variables during the recent black swan event
Year of publication: |
2023
|
---|---|
Authors: | Ghosh, Indranil ; Jana, Rabin K. |
Published in: |
Technological forecasting & social change : an international journal. - Amsterdam : Elsevier, ISSN 0040-1625, ZDB-ID 280700-2. - Vol. 194.2023, p. 1-17
|
Subject: | Bayesian structural time series | Big data analytics | High-frequency financial market forecasting | Maximal overlap discrete wavelet transformation | Nonlinear dynamics | Prognoseverfahren | Forecasting model | Finanzmarkt | Financial market | Zeitreihenanalyse | Time series analysis | Künstliche Intelligenz | Artificial intelligence | Volatilität | Volatility | Big Data | Big data | Börsenkurs | Share price | Theorie | Theory | Zustandsraummodell | State space model |
-
Ghosh, Indranil, (2017)
-
Song, Yuping, (2023)
-
Financial data analytics : theory and application
Köseoğlu, Sinem Derindere, (2022)
- More ...
-
Das, Debojyoti, (2023)
-
Jana, Rabin K., (2022)
-
Modelling financial stress during the COVID-19 pandemic : prediction and deeper insights
Ghosh, Indranil, (2024)
- More ...