A graphically based machine learning approach to predict secondary schools performance in Tunisia
Year of publication: |
2020
|
---|---|
Authors: | Rebai, Sonia ; Ben Yahia, Fatma ; Essid, Hédi |
Published in: |
Socio-economic planning sciences : the international journal of public sector decision-making. - Amsterdam [u.a.] : Elsevier, ISSN 0038-0121, ZDB-ID 208905-1. - Vol. 70.2020, p. 1-14
|
Subject: | Education | Efficiency | Data envelopment analysis | Directional distance function | Machine learning | Random forests | Regression trees | Künstliche Intelligenz | Artificial intelligence | Data-Envelopment-Analyse | Tunesien | Tunisia | Prognoseverfahren | Forecasting model | Regressionsanalyse | Regression analysis | Bildungsniveau | Educational achievement | Technische Effizienz | Technical efficiency | Allgemeinbildende Schule | School of general education | Effizienz | Schätzung | Estimation |
-
Improving predictions of technical inefficiency
Amsler, Christine Elaine, (2024)
-
Agasisti, Tommaso, (2013)
-
Real-time inflation forecasting with high-dimensional models : the case of Brazil
Garcia, Márcio Gomes Pinto, (2017)
- More ...
-
Toward the development of an Islamic banking sustainability performance index
Ammar, Rym, (2023)
-
Daimi, Sarra, (2023)
-
A Taxonomy for the Literature of Financial Institution Performance Analysis
Rebai, Sonia, (2005)
- More ...