A hybrid metaheuristic approach to solving the UBQP problem
This paper presents a hybrid metaheuristic approach (HMA) for solving the unconstrained binary quadratic programming (UBQP) problem. By incorporating a tabu search procedure into the framework of evolutionary algorithms, the proposed approach exhibits several distinguishing features, including a diversification-based combination operator and a distance-and-quality based replacement criterion for pool updating. The proposed algorithm is able to easily obtain the best known solutions for 31 large random instances up to 7000 variables (which no previous algorithm has done) and find new best solutions for three of nine instances derived from the set-partitioning problem, demonstrating the efficacy of our proposed algorithm in terms of both solution quality and computational efficiency. Furthermore, some key elements and properties of the HMA algorithm are also analyzed.
Year of publication: |
2010
|
---|---|
Authors: | Lü, Zhipeng ; Glover, Fred ; Hao, Jin-Kao |
Published in: |
European Journal of Operational Research. - Elsevier, ISSN 0377-2217. - Vol. 207.2010, 3, p. 1254-1262
|
Publisher: |
Elsevier |
Keywords: | UBQP Memetic algorithm Tabu search Pool updating |
Saved in:
Saved in favorites
Similar items by person
-
Iterated dynamic neighborhood search for packing equal circles on a sphere
Lai, Xiangjing, (2023)
-
Diversification-driven tabu search for unconstrained binary quadratic problems
Glover, Fred, (2010)
-
Probabilistic GRASP-Tabu Search algorithms for the UBQP problem
Wang, Yang, (2013)
- More ...