A Kernel Estimator of a Conditional Quantile
Let (X1, Y1), (X2, Y2), ..., be two-dimensional random vectors which are independent and distributed as (X, Y). For 0<p<1, let[xi](p|x) be the conditionalpth quantile ofYgivenX=x; that is,[xi](p|x)=inf{y : P(Y[less-than-or-equals, slant]y|X=x)[greater-or-equal, slanted]p}. We consider the problem of estimating[xi](p|x) from the data (X1, Y1), (X2, Y2), ..., (Xn, Yn). In this paper, a new kernel estimator of[xi](p|x) is proposed. The asymptotic normality and a law of the iterated logarithm are obtained.
Year of publication: |
1996
|
---|---|
Authors: | Xiang, Xiaojing |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 59.1996, 2, p. 206-216
|
Publisher: |
Elsevier |
Keywords: | Conditional quantile conditional empirical process kernel estimator weak convergence law of the iterated logarithm |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Estimation of a quantile in some nonstandard cases
Xiang, Xiaojing, (1995)
-
Some extensions of the asymptotics of a kernel estimator of a distribution function
Shao, Yongzhao, (1997)
-
A note on the bias of L-estimators and a bias reduction procedure
Xiang, Xiaojing, (1995)
- More ...