A Langevin approach to the Log–Gauss–Pareto composite statistical structure
| Year of publication: |
2012
|
|---|---|
| Authors: | Eliazar, Iddo I. ; Cohen, Morrel H. |
| Published in: |
Physica A: Statistical Mechanics and its Applications. - Elsevier, ISSN 0378-4371. - Vol. 391.2012, 22, p. 5598-5610
|
| Publisher: |
Elsevier |
| Subject: | Ornstein–Uhlenbeck dynamics | Linear forces | Gauss distribution | Langevin dynamics | Sigmoidal forces | Exponential tails | Geometric Ornstein–Uhlenbeck dynamics | Log–Gauss distribution | Geometric Langevin dynamics | Power-law tails | Laplace distribution | Log–Laplace distribution | ‘‘mild” randomness | ‘‘wild” randomness | Universality |
-
From shape to randomness: A classification of Langevin stochasticity
Eliazar, Iddo, (2013)
-
Non-linear Shot Noise: Lévy, Noah, & Joseph
Eliazar, Iddo, (2006)
-
Valentina, Florea Nicoleta, (2021)
- More ...
-
On the physical interpretation of statistical data from black-box systems
Eliazar, Iddo I., (2013)
-
Econophysical visualization of Adam Smith’s invisible hand
Cohen, Morrel H., (2013)
-
On the fractal characterization of Paretian Poisson processes
Eliazar, Iddo I., (2012)
- More ...