A latent factor model for forecasting realized variances
Year of publication: |
2021
|
---|---|
Authors: | Calzolari, Giorgio ; Halbleib, Roxana ; Zagidullina, Aygul |
Subject: | realized variance | hyperbolic decay | autocorrelation | dynamic factor model | factor-GARCH model | efficient method of moments | Kalman filter | Volatilität | Volatility | Varianzanalyse | Analysis of variance | Schätzung | Estimation | Zustandsraummodell | State space model | Prognoseverfahren | Forecasting model | Momentenmethode | Method of moments | Faktorenanalyse | Factor analysis | Zeitreihenanalyse | Time series analysis | Schätztheorie | Estimation theory | ARCH-Modell | ARCH model | Autokorrelation | Autocorrelation | Börsenkurs | Share price |
-
Essays on financial time series with a focus on high-frequency data
Becker, Janis, (2020)
-
Forecasting the realized variance in the presence of intraday periodicity
Dumitru, Ana-Maria H., (2019)
-
Prediction power of high-frequency based volatility measures : a model based approach
Hamid, Alain, (2015)
- More ...
-
Estimating Stable Latent Factor Models by Indirect Inference
Calzolari, Giorgio, (2016)
-
Estimating stable latent factor models by indirect inference
Calzolari, Giorgio, (2018)
-
Modelling and forecasting multivariate realized volatility
Halbleib, Roxana, (2011)
- More ...