A Machine Learning Approach of Measuring Audit Quality : Evidence From China
Year of publication: |
[2021]
|
---|---|
Authors: | Hu, Hanxin ; Sun, Ting ; Vasarhelyi, Miklos A. ; Zhang, Min |
Publisher: |
[S.l.] : SSRN |
Subject: | China | Dienstleistungsqualität | Service quality | Künstliche Intelligenz | Artificial intelligence | Wirtschaftsprüfung | Financial audit | Messung | Measurement |
Extent: | 1 Online-Ressource (80 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 17, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3732563 [DOI] |
Classification: | M42 - Auditing |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Identifying Informative Audit Quality Indicators (IAQI) Using Machine Learning
Zhang, Chanyuan (Abigail), (2021)
-
Double Machine Learning with Gradient Boosting and its Application to the Big N Audit Quality Effect
Yang, Jui-Chung, (2020)
-
Variability of Accounting Restatement Measurement in Audit Quality Research
Sellers, R. Drew, (2018)
- More ...
-
Measuring audit quality with surprise scores : evidence from China and the U.S.
Hu, Hanxin, (2024)
-
Auditors Scan News Headlines? The Prophetic Vision for Going-Concern Opinions
Appelbaum, Deniz, (2022)
-
The Double Materiality Audit : Assurance of ESG Disclosure
Appelbaum, Deniz, (2023)
- More ...