A machine learning approach to volatility forecasting
Year of publication: |
[2021]
|
---|---|
Authors: | Christensen, Kim ; Siggaard, Mathias Voldum ; Veliyev, Bezirgen |
Publisher: |
Aarhus, Denmark : Department of Economics and Business Economics, Aarhus University |
Subject: | Gradient boosting | high-frequency data | machine learning | neural network | random forest | realized variance | regularization | volatility forecasting | Volatilität | Volatility | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Theorie | Theory | Lernprozess | Learning process |
Extent: | 1 Online-Ressource (circa 49 Seiten) Illustrationen |
---|---|
Series: | CREATES research paper. - Aarhus : [Verlag nicht ermittelbar], ZDB-ID 2490360-7. - Vol. 2021, 03 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Irrational fads, short-term memory emulation, and asset predictability
Bekiros, Stelios D., (2013)
-
Machine learning in agricultural economics
Baylis, Kathy, (2021)
-
Villeneuve, Yoan, (2022)
- More ...
-
A machine learning approach to volatility forecasting
Christensen, Kim, (2023)
-
Christensen, Kim, (2019)
-
Inference from high-frequency data : a subsampling approach
Christensen, Kim, (2015)
- More ...