A machine learning approach to volatility forecasting
Year of publication: |
2023
|
---|---|
Authors: | Christensen, Kim ; Siggaard, Mathias Voldum ; Veliyev, Bezirgen |
Published in: |
Journal of financial econometrics. - Oxford : Oxford University Press, ISSN 1479-8417, ZDB-ID 2065613-0. - Vol. 21.2023, 5, p. 1680-1727
|
Subject: | accumulated local effect | heterogeneous auto-regression | machine learning | volatility forecasting | Künstliche Intelligenz | Artificial intelligence | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Theorie | Theory | ARCH-Modell | ARCH model | Lernprozess | Learning process |
Description of contents: | Description [doi.org] |
-
Forecasting realized volatility : does anything beat linear models?
Branco, Rafael R., (2024)
-
Forecasting exchange rate volatility : an amalgamation approach
Alexandridis, Antonios K., (2024)
-
A machine learning approach to volatility forecasting
Christensen, Kim, (2021)
- More ...
-
A machine learning approach to volatility forecasting
Christensen, Kim, (2021)
-
Intraday Market Return Predictability Culled from the Factor Zoo
Aleti, Saketh, (2023)
-
The Zoo of Variables Explaining the Post-Earnings Announcement Drift
Hansen, Jacob Hald, (2022)
- More ...