A mathematical proof of how fast the diameters of a triangle mesh tend to zero after repeated trisection
Year of publication: |
2014
|
---|---|
Authors: | Perdomo, Francisco ; Plaza, Ángel ; Quevedo, Eduardo ; Suárez, José P. |
Published in: |
Mathematics and Computers in Simulation (MATCOM). - Elsevier, ISSN 0378-4754. - Vol. 106.2014, C, p. 95-108
|
Publisher: |
Elsevier |
Subject: | Longest-edge | Triangle subdivision | Trisection | Mesh refinement | Finite element method |
-
OOF3D: An image-based finite element solver for materials science
Coffman, Valerie R., (2012)
-
There are simple and robust refinements (almost) as good as Delaunay
Márquez, Alberto, (2014)
-
Parameter estimation of structural dynamic models using eigenvalue and eigenvector information
Allen, J.J., (2008)
- More ...
-
A local refinement algorithm for the longest-edge trisection of triangle meshes
Plaza, Ángel, (2012)
-
Local refinement based on the 7-triangle longest-edge partition
Plaza, Ángel, (2009)
-
Refinement based on longest-edge and self-similar four-triangle partitions
Padrón, Miguel A., (2007)
- More ...