A new approach to measure systemic risk : a bivariate copula model for dependent censored data
Year of publication: |
2019
|
---|---|
Authors: | Calabrese, Raffaella ; Osmetti, Silvia Angela |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 279.2019, 3 (16.12.), p. 1053-1064
|
Subject: | OR in banking | Copula models | Pseudo-maximum likelihood estimation | Censored sampling | Systemic risk | Multivariate Verteilung | Multivariate distribution | Systemrisiko | Schätztheorie | Estimation theory | Statistische Verteilung | Statistical distribution | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Stichprobenerhebung | Sampling | Schätzung | Estimation | Messung | Measurement | Finanzmarkt | Financial market | Finanzkrise | Financial crisis |
-
Three regime bivariate normal distribution : a new estimation method for co-value-at-risk, CoVaR
Choi, Ji-Eun, (2019)
-
Systemic risk measurement : multivariate GARCH estimation of CoVaR
Girardi, Giulio, (2013)
-
Markov Chain Monte Carlo methods for estimating systemic risk allocations
Koike, Takaaki, (2020)
- More ...
-
Calabrese, Raffaella, (2019)
-
A comparative analysis of the UK and Italian small businesses using Generalised Extreme Value models
Andreeva, Galina, (2014)
-
Improving Forecast of Binary Rare Events Data: A GAM‐Based Approach
Calabrese, Raffaella, (2015)
- More ...