A new hybrid method with data-characteristic-driven analysis for artificial intelligence and robotics index return forecasting
Year of publication: |
2023
|
---|---|
Authors: | Zhang, Yue-Jun ; Zhang, Han ; Gupta, Rangan |
Published in: |
Financial innovation : FIN. - Heidelberg : SpringerOpen, ISSN 2199-4730, ZDB-ID 2824759-0. - Vol. 9.2023, 1, Art.-No. 75, p. 1-23
|
Subject: | Artificial Intelligence and Robotics index return forecasting | Combination model | Decomposition and integration model | GARCH model | PSO-LSSVM model | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Roboter | Robot | ARCH-Modell | ARCH model | Kapitaleinkommen | Capital income | Theorie | Theory | Aktienindex | Stock index |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1186/s40854-023-00483-5 [DOI] |
Classification: | E37 - Forecasting and Simulation ; G15 - International Financial Markets ; Q43 - Energy and the Macroeconomy |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting the Artificial Intelligence index returns : a hybrid approach
Zhang, Yue-Jun, (2021)
-
Stock index volatility forecasting with high frequency data
Hol Uspensky, Eugenie, (2002)
-
Predicting volatility of bitcoin returns with ARCH, GARCH and EGARCH models
Yildirim, Hakan, (2023)
- More ...
-
Forecasting the Artificial Intelligence index returns : a hybrid approach
Zhang, Yue-Jun, (2021)
-
Zhang, Yue-Jun, (2023)
-
Zhang, Yue-Jun, (2023)
- More ...