A novel unsupervised fuzzy clustering method for preprocessing of quantitative attributes in association rule mining
Year of publication: |
2014
|
---|---|
Authors: | Thomas, Binu ; Raju, G. |
Published in: |
Information technology and management. - New York, NY [u.a.] : Springer, ISSN 1385-951X, ZDB-ID 2212813-X. - Vol. 15.2014, 1, p. 9-17
|
Subject: | Association rules | Fuzzy clustering | Unsupervised clustering | Weighted association rules | Clusteranalyse | Cluster analysis | Fuzzy-Set-Theorie | Fuzzy sets | Data Mining | Data mining | Regionales Cluster | Regional cluster |
-
Process mining : fuzzy clustering and performance visualization
Dongen, B. F. van, (2010)
-
On the convergence of some possibilistic clustering algorithms
Zhou, Jian, (2013)
-
Segmenting luxe-bargain shoppers using a fuzzy clustering method
Lim, Chae Mi, (2013)
- More ...
-
Thomas, Binu, (2020)
-
Determinants of Licensing Decisions : A Study of Pharmaceutical Industry
Thomas, Binu, (2019)
-
Internationalizing Google AI research Google AI
Gupta, Aayushi, (2020)
- More ...