A numerical study of Markov decision process algorithms for multi-component replacement problems
Year of publication: |
2022
|
---|---|
Authors: | Andersen, Jesper Fink ; Andersen, Anders Reenberg ; Kulahci, Murat ; Nielsen, Bo Friis |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 299.2022, 3 (16.6.), p. 898-909
|
Subject: | Dynamic programming | Maintenance | Markov decision process | Multi-component system | Numerical study | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Markov-Kette | Markov chain | Entscheidung | Decision | Instandhaltung | Maintenance policy | Dynamische Optimierung | Algorithmus | Algorithm |
-
Condition-based production for stochastically deteriorating systems : optimal policies and learning
Drent, Collin, (2024)
-
Analytical solution to a partially observable machine maintenance problem with obvious failures
Zhang, Hao, (2023)
-
A unified algorithm framework for mean-variance optimization in discounted Markov decision processes
Ma, Shuai, (2023)
- More ...
-
Optimization of hospital ward resources with patient relocation using Markov chain modeling
Andersen, Anders Reenberg, (2017)
-
Staff optimization for time-dependent acute patient flow
Andersen, Anders Reenberg, (2019)
-
Parisian types of ruin probabilities for a class of dependent risk-reserve processes
Bladt, Mogens, (2019)
- More ...