A practical Monte Carlo method for pricing equity‑linked securities with time‑dependent volatility and interest rate
Year of publication: |
2024
|
---|---|
Authors: | Kim, Sangkwon ; Lyu, Jisang ; Lee, Wonjin ; Park, Eunchae ; Jang, Hanbyeol ; Lee, Chaeyoung ; Kim, Junseok |
Subject: | Fast Monte Carlo method | Time-dependent volatility | Time-dependent interest rate | Brownian bridge | Black–Scholes equation | Volatilität | Volatility | Monte-Carlo-Simulation | Monte Carlo simulation | Zins | Interest rate | Optionspreistheorie | Option pricing theory | Stochastischer Prozess | Stochastic process | Zinsstruktur | Yield curve |
-
Interest rate derivatives for the fractional Cox-Ingersoll-Ross model
Bishwal, Jaya Prakasah Narayan, (2023)
-
Monte Carlo Calibration Method of Stochastic Volatility Model with Stochastic Interest Rate
Xu, Mingyang, (2019)
-
Value-at-risk estimation with stochastic interest rate models for option-bond portfolios
Wang, Xiaoyu, (2017)
- More ...
-
Fast Monte Carlo simulation for pricing equity-linked securities
Jang, Hanbyeol, (2020)
-
Lee, Chaeyoung, (2023)
-
A practical finite difference method for the three-dimensional Black-Scholes equation
Kim, Junseok, (2016)
- More ...