A random forest-based approach to identifying the most informative seasonality tests
Year of publication: |
2020
|
---|---|
Authors: | Ollech, Daniel ; Webel, Karsten |
Publisher: |
Frankfurt a. M. : Deutsche Bundesbank |
Subject: | binary classification | conditional inference trees | correlated predictors | JDemetra+ | simulation study | supervised machine learning |
Series: | Deutsche Bundesbank Discussion Paper ; 55/2020 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
ISBN: | 978-3-95729-780-8 |
Other identifiers: | 1736582380 [GVK] hdl:10419/225323 [Handle] RePEc:zbw:bubdps:552020 [RePEc] |
Classification: | C12 - Hypothesis Testing ; C14 - Semiparametric and Nonparametric Methods ; C22 - Time-Series Models ; C45 - Neural Networks and Related Topics ; C63 - Computational Techniques |
Source: |
-
A random forest-based approach to identifying the most informative seasonality tests
Ollech, Daniel, (2020)
-
A random forest-based approach to combining and ranking seasonality tests
Ollech, Daniel, (2023)
-
A Random Forest-Based Approach to Identifying the Most Informative Seasonality Tests
Ollech, Daniel, (2021)
- More ...
-
Täglicher Lkw-Maut-Fahrleistungsindex aus digitalen Prozessdaten der Lkw-Mauterhebung
Cox, Michael, (2020)
-
A random forest-based approach to combining and ranking seasonality tests
Ollech, Daniel, (2023)
-
A random forest-based approach to identifying the most informative seasonality tests
Ollech, Daniel, (2020)
- More ...