A random forests approach to predicting clean energy stock prices
Year of publication: |
2021
|
---|---|
Authors: | Sadorsky, Perry A. |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 14.2021, 2/48, p. 1-20
|
Subject: | clean energy stock prices | forecasting | machine learning | random forests | Börsenkurs | Share price | Indexderivat | Index derivative | Erneuerbare Energie | Renewable energy | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Entscheidungsbaum | Decision tree |
-
Stock market prediction : the application of text-mining in Vietnam
Le Hong Hanh, (2022)
-
Wen, Xiao, (2021)
-
Electricity price forecasting with neural networks on EPEX order books
Schnürch, Simon, (2020)
- More ...
-
Can bitcoin replace gold in an investment portfolio?
Henriques, Irene, (2018)
-
A random forests approach to predicting clean energy stock prices
Sadorsky, Perry A., (2021)
-
Predicting gold and silver price direction using tree-based classifiers
Sadorsky, Perry A., (2021)
- More ...