A real-time prediction framework for energy consumption of electric buses using integrated Machine learning algorithms
| Year of publication: |
2025
|
|---|---|
| Authors: | Dong, Changyin ; Xiong, Zhuozhi ; Li, Ni ; Yu, Xinlian ; Liang, Mingzhang ; Zhang, Chu ; Li, Ye ; Wang, Hao |
| Published in: |
Transportation research : an international journal. - Oxford : Pergamon, Elsevier Science, ISSN 1878-5794, ZDB-ID 2013782-5. - Vol. 194.2025, Art.-No. 103884, p. 1-19
|
| Subject: | Artificial neural network | Electric bus | Energy consumption prediction | SHAP | XGBoost | Energiekonsum | Energy consumption | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Algorithmus | Algorithm |
-
Sector-specific financial forecasting with machine learning algorithm and SHAP interaction values
Ergenç, Cansu, (2025)
-
Göncü, Ahmet, (2024)
-
Ensembled LSTM with walk forward optimization in algorithmic trading
Chojnacki, Karol, (2023)
- More ...
-
Heuristic feeder-bus operation strategy considering weather information : a chance-constrained model
Liu, Yuhao, (2024)
-
An optimisation method for complex product design
Li, Ni, (2013)
-
Controlling Shareholders’ Stock Pledge and Institutional Shareholding : Evidence from China
Li, Ni, (2017)
- More ...