A Review on Derivative Hedging using Reinforcement Learning
Year of publication: |
2022
|
---|---|
Authors: | Liu, Peng |
Publisher: |
[S.l.] : SSRN |
Subject: | Derivat | Derivative | Hedging | Theorie | Theory | Lernen | Learning | Lernprozess | Learning process |
Extent: | 1 Online-Ressource (19 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments September 13, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4217989 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Deep Hedging of Derivatives Using Reinforcement Learning
Cao, Jay, (2020)
-
The QLBS Q-Learner goes NuQLear : fitted Q iteration, inverse RL, and option portfolios
Halperin, Igor, (2019)
-
A review on derivative hedging using reinforcement learning
Liu, Peng, (2023)
- More ...
-
A Stochastic Volatility Model and Inference for the Term Structure of Interest
Liu, Peng, (2007)
-
Editorial: Bridging the gap between innovationand entrepreneurship
Zhou, Peng, (2022)
-
Dynamic Relation Mechanism between Cotton Future Price and Stock Price of Related Listed Companies
Liu, Peng, (2011)
- More ...