A Robust Entropy-Based Test of Asymmetry for Discrete and Continuous Processes
We consider a metric entropy capable of detecting deviations from symmetry that is suitable for both discrete and continuous processes. A test statistic is constructed from an integrated normed difference between nonparametric estimates of two density functions. The null distribution (symmetry) is obtained by resampling from an artificially lengthened series constructed from a rotation of the original series about its mean (median, mode). Simulations demonstrate that the test has correct size and good power in the direction of interesting alternatives, while applications to updated Nelson & Plosser (1982) data demonstrate its potential power gains relative to existing tests.
Year of publication: |
2008-10
|
---|---|
Authors: | Maasoumi, Esfandiar ; Racine, Jeffrey S. |
Institutions: | Department of Economics, Emory University |
Saved in:
Saved in favorites
Similar items by person
-
A Nonparametric Test for Equality of Distributions with Mixed Categorical and Continuous Data
Li, Qi, (2008)
-
A Solution to Aggregation and an Application to Multidimensional "Well-being" Frontiers
Maasoumi, Esfandiar, (2013)
-
A versatile and robust metric entropy test of time-reversibility, and other hypotheses
Racine, Jeffrey S., (2007)
- More ...