A scenario generation-based lower bounding approach for stochastic scheduling problems
In this paper, we investigate scenario generation methods to establish lower bounds on the optimal objective value for stochastic scheduling problems that contain random parameters with continuous distributions. In contrast to the Sample Average Approximation (SAA) approach, which yields probabilistic bound values, we use an alternative bounding method that relies on the ideas of discrete bounding and recursive stratified sampling. Theoretical support is provided for deriving exact lower bounds for both expectation and conditional value-at-risk objectives. We illustrate the use of our method on the single machine total weighted tardiness problem. The results of our numerical investigation demonstrate good properties of our bounding method, compared with the SAA method and an earlier discrete bounding method.
Year of publication: |
2012
|
---|---|
Authors: | Liao, L ; Sarin, S C ; Sherali, H D |
Published in: |
Journal of the Operational Research Society. - Palgrave Macmillan, ISSN 0160-5682. - Vol. 63.2012, 10, p. 1410-1420
|
Publisher: |
Palgrave Macmillan |
Saved in:
Saved in favorites
Similar items by person
-
A scenario generation-based lower bounding approach for stochastic scheduling problems
Liao, L, (2012)
-
Minimizing the maximum network flow: models and algorithms with resource synergy considerations
Lunday, B J, (2012)
-
Set partitioning and packing versus assignment formulations for subassembly matching problems
Ghoniem, A, (2011)
- More ...