A simple efficient moment-based estimator for the stochastic volatility model
Year of publication: |
2019
|
---|---|
Authors: | Ahsan, Nazmul ; Dufour, Jean-Marie |
Published in: |
Topics in identification, limited dependent variables, partial observability, experimentation, and flexible modelling ; Part A. - Bingley, UK : Emerald Publishing, ISBN 978-1-78973-242-9. - 2019, p. 157-201
|
Subject: | Stochastic volatility | latent variable | ARCH | generalized method of moments | quasi-maximum likelihood | Bayesian estimator | Markov Chain Monte Carlo | asymptotic distribution | Monte Carlo test | stock returns | Schätztheorie | Estimation theory | Volatilität | Volatility | Monte-Carlo-Simulation | Monte Carlo simulation | Markov-Kette | Markov chain | Kapitaleinkommen | Capital income | Stochastischer Prozess | Stochastic process | ARCH-Modell | ARCH model | Momentenmethode | Method of moments | Bayes-Statistik | Bayesian inference | Schätzung | Estimation |
-
Simple estimators and inference for higher-order stochastic volatility models
Ahsan, Nazmul, (2021)
-
Volatility estimation using a rational GARCH model
Takaishi, Tetsuya, (2018)
-
Ignatieva, Ekaterina, (2015)
- More ...
-
Simple estimators and inference for higher-order stochastic volatility models
Ahsan, Nazmul, (2021)
-
Ahsan, Nazmul, (2022)
-
Early-Life Access to a Basic Health Care Program and Adult Outcomes in Indonesia
Ahsan, Nazmul, (2018)
- More ...