A simulation-based approximate dynamic programming approach to dynamic and stochastic resource-constrained multi-project scheduling problem
Year of publication: |
2024
|
---|---|
Authors: | Satic, U. ; Jacko, P. ; Kirkbride, Christopher |
Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 315.2024, 2 (1.6.), p. 454-469
|
Subject: | Approximate dynamic programming | Dynamic programming | Dynamic resource allocation | Markov decision processes | Project scheduling | Dynamische Optimierung | Scheduling-Verfahren | Scheduling problem | Mathematische Optimierung | Mathematical programming | Markov-Kette | Markov chain | Theorie | Theory | Projektmanagement | Project management | Simulation |
-
Wenzel, Arturo, (2024)
-
Simulation-based approximate policy iteration for dynamic patient scheduling for radiation therapy
Gocgun, Yasin, (2018)
-
Approximate policy iteration for dynamic resource-constrained project scheduling
Parizi, Mahshid Salemi, (2017)
- More ...
-
Glazebrook, K. D., (2014)
-
Distributionally robust resource planning under binomial demand intakes
Black, Ben, (2023)
-
Satic, Ugur, (2022)
- More ...